Our Best Practices Series has focused, so far, on authoring and lifecycle management aspects of managing decisions. This post will start introducing what you should consider when promoting your decision applications to Production.
Make sure you always use release management for your decision
Carole-Ann has already covered why you should always package your decisions in releases when you have reached important milestones in the lifecycle of your decisions: see Best practices: Use Release Management. This is so important that I will repeat her key points here stressing its importance in the production phase.
You want to be 100% certain that you have in production is exactly what you tested, and that it will not change by side effect. This happens more frequently than you would think: a user may decide to test variations of the decision logic in what she or he thinks is a sandbox and that may in fact be the production environment.
You also want to have complete traceability, and at any point in time, total visibility on what the state of the decision logic was for any decision rendered you may need to review.
Everything they contributes to the decision logic should be part of the release: flows, rules, predictive and lookup models, etc. If your decision logic also includes assets the decision management system does not manage, you open the door to potential execution and traceability issues. We, of course, recommend managing your decision logic fully within the decision management system.
Only use Decision Management Systems that allow you to manage releases, and always deploy decisions that are part of a release.
Make sure the decision application fits your technical environments and requirements
Now that you have the decision you will use in production in the form of a release, you still have a number of considerations to take into account.
It must fit into the overall architecture
Typically, you will encounter one or more of the following situations
- The decision application is provided as a SaaS and invoked through REST or similar protocols (loose coupling)
- The environment is message or event driven (loose coupling)
- It relies mostly on micro-services, using an orchestration tool and a loose coupling invocation mechanism.
- It requires tight coupling between one (or more) application components at the programmatic API level
Your decision application will need to simply fit within these architectural choices with a very low architectural impact.
One additional thing to be careful about is that organizations and applications evolve. We’ve seen many customers deploy the same decision application in multiple such environments, typically interactive and batch. You need to be able to do multi-environment deployments a low cost.
It must account for availability and scalability requirements
In a loosely coupled environments, your decision application service or micro-service with need to cope with your high availability and scalability requirements. In general, this means configuring micro-services in such a way that:
- There is no single point of failure
- replicate your repositories
- have more than one instance available for invocation transparently
- Scaling up and down is easy
Ideally, the Decision Management System product you use has support for this directly out of the box.
It must account for security requirements
Your decision application may need to be protected. This includes
- protection against unwanted access of the decision application in production (MIM attacks, etc.)
- protection against unwanted access to the artifacts used by the decision application in production (typically repository access)
Make sure the decision applications are deployed the most appropriate way given the technical environment and the corresponding requirements. Ideally you have strong support from your Decision Management System for achieving this.
Leverage the invocation mechanisms that make sense for your use case
You will need to figure out how your code invokes the decision application once in production. Typically, you may invoke the decision application
- separately for each “transaction” (interactive)
- for a group of “transactions” (batch)
- for stream of “transactions” (streaming or batch)
Choosing the right invocation mechanism for your case can have a significant impact on the performance of your decision application.
Manage the update of your decision application in production according to the requirements of the business
One key value of Decision Management Systems is that with them business analysts can implement, test and optimize the decision logic directly.
Ideally, this expands into the deployment of decision updates to the production. As the business analysts have updated, tested and optimized the decision, they will frequently request that it be deployed “immediately”.
Traditional products require going through IT phases, code conversion, code generation and uploads. With them, you deal with delays and the potential for new problems. Modern systems such as SMARTS do provide support for this kind of deployment.
There are some key aspects to take into account when dealing with old and new versions of the decision logic:
- updating should be a one-click atomic operation, and a one-API call atomic operation
- updating should be safe (if the newer one fails to work satisfactorily, it should not enter production or should be easily rolled back)
- the system should allow you to run old and new versions of the decision concurrently
In all cases, this remains an area where you want to strike the right balance between the business requirements and the IT constraints.
For example, it is possible that all changes are batched in one deployment a day because they are coordinated with other IT-centric system changes.
Make sure that you can update the decisions in Production in the most diligent way to satisfy the business requirement.
Track the business performance of your decision in production
Once you have your process to put decisions in the form of releases in production following the guidelines above, you still need to monitor its business performance.
Products like SMARTS let you characterize, analyze and optimize the business performance of the decision before it is put in production. It will important that you continue with the same analysis once the decision is in production. Conditions may change. Your decisions, while effective when they were first deployed, may no longer be as effective after the changes. By tracking the business performances of the decisions in production you can identify this situation early, analyze the reasons and adjust the decision.
In a later installment on this series, we’ll tackle how to approach the issue of decision execution performance as opposed to decision business performance.
Learn more about Decision Management and Sparkling Logic’s SMARTS™ Data-Powered Decision Manager